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Abstract The effects of chemical shift anisotropy (CSA)

are evident in line-shapes or side-band analysis in solid-

state NMR, in the observed line positions in partially ori-

ented samples, and in relaxation effects in liquid-state

studies. In all of these cases, the effective shielding tensor

is influenced by fast vibrational averaging in addition to

larger-amplitude internal motions and to overall libration

or rotation. Here we compute the contributions of vibra-

tional averaging (including zero-point motions) to the CSA

relaxation strengths for the nitrogen and carbonyl carbon in

two simple peptide models, and for snapshots taken from a

path-integral simulation of a small protein. Because the 15N

shielding tensor is determined by all the atoms of the

peptide group, it is less influenced by vibrational motion

than (for example) the N–H dipolar interaction, which is

more sensitive to the motion of the light hydrogen atom.

Computed order parameters for CSA averaging are hence

much closer to unity than are N–H dipolar order parame-

ters. This leads to a reduction by about 9% in the magni-

tude of the amide nitrogen CSA that is needed to fit liquid-

state relaxation data. Similar considerations apply to the

carbonyl carbon shielding tensor, but in this case the dif-

ferences between dipolar and CSA averaging are smaller.

These considerations will be important for making com-

parisons between CSA tensors extracted from various

NMR experiments, and for comparisons to quantum

chemical calculations carried out on static conformers.

Keywords Chemical shift � Peptide � Vibrations

Introduction

Chemical shielding is a tensor quantity, and the effective

field at the nucleus depends upon the orientation of this

tensor with respect to the magnetic field. The way in which

this orientation is averaged can provide important infor-

mation about macromolecular structure and dynamics. This

averaging affects line-shapes in solid state NMR, residual

chemical shifts in partially aligned samples, and relaxation

behavior in all environments. The basic theory of how

motions affect the observed parameters is formally analo-

gous to that used for dipolar coupling (Abragam 1961), but

things are more complicated in practice, since shielding is

an electronic property that (unlike dipolar couplings) can

depend in a very complex way on nuclear coordinates. The

way in which isotropic shifts are averaged by vibrational

motion has been well investigated (Nielsen et al. 2000;

Woodford and Harbison 2006), but much less is known

about CSA effects. Here we use quantum chemical calcu-

lations and normal mode theory to study vibrational aver-

aging in model peptides, in a manner analogous to that

used previously to examine dipolar couplings (Case 1999).

We also extract snapshots from a path-integral simulation

of a small protein to compare with the simple peptide

models.

Many standard treatments of relaxation theory implicitly

assume that the principal components and directions of the

CSA tensor are fixed in a local molecular frame, making

the theory analogous to that used for dipolar couplings

when bond distances and angles are assumed to be con-

stant. This approach takes advantage of the fact that local

vibrational averaging is invariably in the extreme narrow-

ing limit, so that one can account for it through the use of

an effective CSA tensor (or an effective bond length in the

case of dipolar couplings). Since the components of the
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CSA tensor are (in practice) almost always treated as

empirical parameters, using such an effective tensor as a

fitting parameter makes good sense. Nevertheless, there are

a number of reasons why it would be useful to understand

the details of the vibrational averaging that creates the

effective tensors. First, different experiments involve dif-

ferent sorts of averaging: qualitatively, ‘‘pure’’ CSA

relaxation experiments depend upon the square of the

shielding tensor, whereas CSA/dipole cross-correlation,

residual shifts and lineshapes in solid-state experiments

involve terms linear in the shielding anisotropy. One needs

a model for vibrational motion and its effects on shielding

in order to compare results, or to fit multiple data sets to a

single atomic model. Second, electronic structure calcula-

tions typically consider only static (average) structures. If

insight from quantum chemistry is to become quantita-

tively useful for the interpretation of NMR data, we need to

understand how to connect static and vibrationally-averaged

shielding tensors.

The classic treatment of effects of vibrational aver-

aging on dipolar and quadrupolar coupling is that of

Henry and Szabo (Henry and Szabo 1985). The dipolar

interaction depends only upon nuclear positions, so that

its behavior under vibrational averaging is straightfor-

ward, assuming that vibrational normal modes are

available. Quadrupolar relaxation depends upon the

behavior of the electric field gradient (EFG) tensor,

which is an electronic property; Henry and Szabo were

able to make progress here by using a model in which

the EFG was assumed to depend in a certain way upon

bond length (and not upon any other geometric vari-

ables). Averaging of CSA interactions is a more complex

problem since the dependence of shielding on molecular

geometry is not well understood. Recently, Zuiderweg

and co-workers have used density functional calculations

to create a model for how carbonyl carbon CSA tensors

in peptides depend upon the local nuclear geometry

(Jordan et al. 2007). Using this, they could average over

vibrational motion to obtain an effective tensor, i.e., one

that would show the same CSA relaxation in a rigid

molecule as the real tensor does when vibrational effects

are included. Here we use a simpler but more ‘‘brute

force’’ approach, generating snapshots that sample local

vibrational motion, and carrying out quantum chemistry

calculations on each such snapshot. This eliminates the

need to identify the most important geometric variables

and to provide a fit for the complex behavior that con-

nects CSA tensors and geometries; on the other hand, it

means that each new type of averaging requires a fresh

set of quantum calculations. As noted below, the two

sorts of calculations give nearly identical conclusions for

carbonyl carbons.

Theory

Relaxation theory

The general theory of NMR relaxation is covered in many

places, and will not be repeated here (Kowalewski and

Mäler 2006; Cavanagh et al. 2007). Under appropriate

conditions, the influence of molecular motion on spin

transition rates is governed by components of a spectral

density function, jk;k
0

m ðxÞ; which is the Fourier transform of

a time-correlation function:

Ck;k0

m ðsÞ ¼ xkð0Þxk0 ðsÞC�2mðukð0ÞÞC2mðuk0 ðsÞÞ
D E

ð1Þ

Here k and k¢ denote the relaxation operators involved; we

will be concerned here with dipolar relaxation, where

xk = ci cj/hr3, and CSA relaxation, where xk = ci BDr. Here

the c factors are nuclear magnetogyric ratios, r is the

instantaneous distance between the spins whose dipolar

coupling is being considered, B is the magnitude of the

external magnetic field, and Dr is the instantaneous value of

the shielding anisotropy. For dipolar coupling, the unit

vector uk lies along the vector connecting the two spins,

whereas for CSA effects, it is the direction of unique prin-

cipal component of the shielding tensor. The brackets in Eq.

1 indicate an average over all the molecules in the ensemble,

and C2m ” (4p/5)1/2Y2m is a modified spherical harmonic.

If there is no preferred direction in space, as in isotropic

solution or in a randomly-oriented powder, the expression

in Eq. 1 is independent of the subscript m, and we can

average over the five possible values using the spherical

harmonic addition theorem. This gives

Ck;k0 ðsÞ ¼ xkð0Þxk0 ðsÞP2½u
k
ð0Þ � uk0 ðsÞ�

D E
ð2Þ

where P2(x) ” (3x2– 1)/2 is a Legendre polynomial. For

local vibrational relaxation, the decay of these correlation

functions is in the sub-picosecond regime, and we are

always in the extreme narrowing limit for NMR relaxation.

This implies that we can set s to a value short compared to

overall tumbling, and yet still large enough that the vectors

at time s have become uncorrelated with their values at

time 0. Then Eq. 1 becomes

Ck;k0

m ðs!1Þ ¼ xkC�2mðukÞ
� �

xk0C2mðuk0 Þ
D E

ð3Þ

where each average is over the equilibrium ensemble.

Since vibrational averaging takes place on a very rapid

time scale, and has a small amplitude, we can effectively

separate its correlation function from much slower processes

such as overall rotational tumbling. In the Lipari-Szabo, or
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‘‘model-free’’ approach (Lipari and Szabo 1982), the spec-

tral density for the combination of fast internal and slower

overall rotation becomes:

JLS ¼ 2S2sc

1þ x2s2
c

þ 2ð1� S2Þs
1þ x2s2

ð4Þ

Here, we have assumed for simplicity that the overall

motion is isotropic with a rotational relaxation time sc. The

squared order parameter, S2 represents the plateau value of

Eq. 3 (where Ckk^¢ is normalized to unity at time zero), and

s�1 ¼ s�1
c þ s�1

e , where se is the decay time for the internal

motion. When se = sc, as is the case here, the second term

of Eq. 4 can be neglected; then the effect of the rapid

vibrational motion is just to scale the rotational spectral

density by a factor of S2. The purpose of this paper is to

provide some estimates of these scaling factors for plau-

sible models of vibrational motion in peptides.

Vibrational averaging also affects solid-state NMR

spectra, including powder patterns (or the closely allied

spinning side-band analysis) that have traditionally pro-

vided our primary knowledge about chemical shielding

anisotropies. Vibrational effects on solid-state lineshapes

have been considered in detail before (Torchia and Szabo

1982; Henry and Szabo 1985; Ishii et al. 1997), and we

will not repeat this analysis here. The general result is that

the vibrationally averaged interaction strength extracted

from a powder pattern is the square root of the interaction

defined in Eq. 2 (assuming identical vibrations in the solid

and liquid states). This is just what one might expect from

the fact that the interaction Hamiltonian appears to second

order in relaxation analysis, but only to first order in

lineshape analysis. The same sort of square root relation-

ship also holds for motional effects on residual dipolar

couplings, for example (Tjandra and Bax 1997; Tsui et al.

2000). This simple connection between motionally aver-

aged frequencies and relaxation depends on an assumption

of axial symmetry (Henry and Szabo 1985; Tsui et al.

2000), but is approximately true even for non-axial

systems.

The dipolar interaction tensor is always axially sym-

metric about the (instantaneous) bond vector, so that the uk

direction in Eq. 1 can be taken as this unique direction.

Shielding tensors, however, need not have any axial

symmetry. As a general second rank tensor, r can be

decomposed into a sum of tensors of rank 0, 1, and 2:

r ¼ rð0Þ þ rð1Þ þ rð2Þ

Here r(0) is the unit matrix (tensor) multiplied by the

isotropic shielding, which is (rxx + ryy + rzz)/3; this is a

scalar quantity, independent of orientation. The rank 1

component r(1) is the antisymmetric component of the full

tensor:

rð1Þ � ðr� rTÞ=2 ð5Þ

and the rank 2 tensor is the (traceless) orientation-

dependent part of the symmetric component:

rð2Þ � ðrþ rTÞ=2� rð0Þ ð6Þ

If we rotate the coordinate system to a frame where r(2) is

diagonal (which can always be achieved for a real

symmetric tensor), then we can write:

rð2Þ ¼
r11 � riso 0 0

0 r22 � riso 0

0 0 r33 � riso

2
64

3
75

¼ 1

3
Dr1

2 0 0

0 �1 0

0 0 �1

2
64

3
75þ 1

3
Dr2

�1 0 0

0 2 0

0 0 �1

2
64

3
75 ð7Þ

Here Dr1 = r11 – r33, and Dr2 = r22 – r33. The final line

decomposes a general non-axial symmetric tensor into two

axially symmetric parts, which can always be done. Note

that the two tensors in the final line of Eq. 7 have values of

rn � r? of Dr1 and Dr2, respectively. We can treat the

nitrogen CSA tensor as approximately axially symmetric,

so that Dr1 ” Dr and Dr2 = 0. For the carbonyl carbon,

however, the tensor is very rhombic, and both tensors (plus

the cross correlations between them) must be considered to

understand the relaxation process.

Normal mode analysis

Normal mode vibrational analysis is a standard topic

(Goldstein 1980), and only an outline is given here. The

basic idea is to expand the potential function VðxÞ in a

Taylor series expansion about some point x0 :

VðxÞ ¼ VðxoÞ þ g � ðx� x0Þ þ
1

2
ðx� x0Þ � F � ðx� x0Þ

ð8Þ

If the gradient g of the potential vanishes at this point

and one ignores third and higher-order derivatives, it is

straightforward to show that the dynamics of the system

can be described in terms of the normal mode directions

and frequencies Qk;xk; which satisfy:

M�1=2 FM�1=2 Qk ¼ x2
kQk

Qk �Qj ¼ dkj ð9Þ
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In Cartesian coordinates, the matrix M contains atomic

masses on its diagonal, and the Hessian matrix F contains

the second derivatives of the potential energy evaluated at

x0: The (classical) time evolution of the system is then:

xiðtÞ ¼ xið0Þ þ 21=2
X

k

Qikm
�1=2
i rk cosðxkt þ dkÞ ð10Þ

where rk is an amplitude, xk the angular frequency and dk

the phase of the kth normal mode of motion. The phases

and amplitudes depend upon the positions and velocities at

time t = 0. The thermal averages of the second moments rk
2

of the amplitude distributions can be calculated for both

classical and quantum statistics:

r2
k;class ¼

kT

x2
k

; r2
nk;qm ¼

h

4pxk
coth

hxk

4pkT
ð11Þ

where h and k are the Planck and Boltzmann constants. The

two statistics coincide in the limits of low frequency or

high temperature. For biomolecules, the most important

difference is generally that higher frequency modes have

little amplitude in classical statistics but have non-negli-

gible zero-point motion in quantum statistics. Harmonic

models thus provide one of the few practical ways for

including quantum effects in biomolecular simulations.

Averages over the motion represented by normal modes

are often carried out by Taylor-series expansions about x0

for each normal mode (Woodford and Harbison 2006), but

for the present purposes, it is more convenient to randomly

sample points from a thermal distribution:

xðnÞ ¼ x0 þ
X

k

s
ðnÞ
k M�1=2Qk ð12Þ

where s
ðnÞ
k is a pseudo-random number drawn from a

Gaussian distribution with mean zero and variance r2
k : A

quantum chemistry calculation can then be done at each

point xðnÞ and the results averaged (using Eq. 3) to yield the

required averages over vibrational motion.

We applied this model to two model peptide systems, N-

methylacetamide (NMA), and NMA3, where the central

peptide unit was hydrogen bonded on each side to another

peptide model, as shown in Fig. 1, left. The geometries

were minimized and normal modes calculated using the

B3LYP density functional formalism and a 6-31G** basis

set. Then 100 snapshots were obtained using Eq. 12 with

quantum statistics at T = 0. For each snapshot, chemical

shielding tensors were computed using a GIAO method,

again with the B3LYP functional, but now with cc-pVTZ

and cc-pVQZ basis sets. These were extrapolated to an

approximate complete basis set (CBS) limit using a

two-point extrapolation procedure we derived earlier:

rðCBSÞ ¼ �0:730rðcc� pVTZÞ þ 1:730rðcc� pVQZÞ
ð13Þ

We have shown in previous work that such a CBS

density functional approach gives shielding tensors for

model peptides that are in reasonable agreement both with

experiment (as best one can tell) and with CBS extrapo-

lations from correlated wavefunctions at the MP2 level

(Moon and Case 2006). There are certainly remaining

limitations in this approach, both in representing correla-

tion effects on shielding, and describing environmental

effects such as hydrogen bonding, but the general trends

reported here are expected to be reliable.

Path integral molecular dynamics

The equilibrium properties of a quantum system can

also be approached by path-integral methods (Berne and

Thirumalai 1986). This approach exploits an isomorphism

between the quantum Boltzmann distribution (which is

what we are looking for) and a classical system with P

copies of each atom; in the classical system, the copies of

each atom are connected by artificial spring forces, and the

forces between atoms are reduced by a factor 1/P. The

classical system can then be simulated by conventional

methods such as Monte Carlo or molecular dynamics

methods. As the number of copies grows, the partition

function of the classical system approaches the quantum

limit. We have recently implemented path-integral molec-

ular dynamics (PIMD) methods into the Amber simulation

programs (Case et al. 2005; Paesani et al. 2006). Each of the

Fig. 1 N-methylacetamide

trimer. Left: DFT-optimized

structure for normal mode

calculations; right: one snapshot

of the fragment constructed

from Phe30 in the PIMD

simulation
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P ‘‘beads’’ is simulated on a separate thread, and the

springs are implemented via interprocess communication.

A normal mode expansion in the bead coordinates is used

to mitigate the stiffness of the dynamics between beads.

Further details of the implementation are given by (Paesani

et al. 2006).

We carried out a PIMD simulation of fragment B3 of

protein G (‘‘GB3’’) using the Amber ff99sb force field for

the protein (Hornak et al. 2006) and the q-SPCfw model

for water (Paesani et al. 2006). (This is a preliminary

simulation, since the water force field has been optimized

for PIMD simulations but the protein force field has not.)

After a classical equilibration, starting from the 1P7E pdb

structure, the system was expanded to P = 24 beads, and

1 ns of normal-mode PIMD simulation was carried out

with a time step of 0.5 fs. The temperature was regulated at

300 K with Nose-Hoover chains, and other details are as

described by (Paesani et al. 2006). For this time period, the

system was very stable, moving to structures with an RMS

backbone deviation of about 0.7 Å from the starting

structure, and maintaining all of the backbone secondary

structure. Further analysis of this simulation will be given

elsewhere.

Since we are primarily interested in local vibrational

motion, we chose to analyze two residues, Phe30 and

Phe52, that are in regular regions of the secondary structure

of GB3: Phe30 is in the central helix, and Phe52 is part of

the b sheet; both have low backbone mobility as measured

by 15N relaxation analysis (Hall and Fushman 2003). In

order to minimize the effects of overall tumbling, and of

other slow internal motions that might be present, we

sampled points over a short (32 fs) period, starting (arbi-

trarily) at 1.025 ns. The structures we used for analysis

were each of the 24 beads at four (real) time points sepa-

rated by 8 fs, for a total of 96 structures. Test calculations

(not shown) indicated that going to longer time periods (out

to 100 fs) did not significantly alter the spread of structures

being sampled. The sampling period represents a com-

promise between having enough time (and beads) to sam-

ple local vibrational motions, without having

contamination by slower processes of such as overall

rotational diffusion.

The 96 structures chosen in this fashion were then

converted to model systems by extracting the Cai–1, C¢ i–1,

Oi–1, Ni, Hi, and Cai atoms, for i = 30 or 52, along with the

corresponding atoms of two peptide groups to which Phe30

or Phe52 are hydrogen bonded. Hydrogens were added

with standard geometries to the Ca atoms, so that the

fragment system was (NMA)3 (see the right side of Fig. 1).

These fragments were then subjected to the same analysis

as described above for the normal mode analysis. That is

shielding calculations were carried out using B3LYP and

the cc-pVTZ and cc-pVQZ basis sets, the results were

extrapolated to the complete basis limit, and the results

averaged using Eq. 3.

Results

The general behavior of shielding tensors for atoms in a

peptide group is well-understood (Sitkoff and Case 1998),

and is illustrated in Fig. 2. For nitrogen, r11 is roughly

along the N–H bond, but displaced from it by about 20� as

shown. The tensor is roughly axial about the r11 direction,

although rhombic components can be important for quan-

titative analysis. In our (NMA)3 calculations, the average

shieldings in the principal axis frame were 0.6, 147.7 and

186.0 ppm, giving a rhombicity parameter g ” (r22 – r33)/

(r11– riso) of 0.42 and a value of Dr ” r11 –(r22 + r33)/2 of

–166.3 ppm. For isotropic motion, the effect of rhombicity

is to increase Dr by a factor of (1 + g2/3)1/2, which is an

increase of 3%. For anisotropic motion, the results will be

somewhat different, but quite high precision data would be

required to detect the effects of non-axial symmetry in

NMR relaxation.

The carbonyl carbon tensor, on the other hand, is very

non-axial. Average values from the (NMA)3 model are –

92.8, –17.7 and 80.3 ppm, so that any assumption of an

axial tensor makes little sense. In our analysis, we will

separate the total shielding tensor into two axial compo-

nents as in Eq. 7. Overall CSA relaxation is then viewed

as auto-relaxation of the two axial tensors, plus a cross-

correlation between them.

15N order parameters

For 15N relaxation, the principal results are given in

Tables 1 and 2. The relative effects of vibrational aver-

aging are shown in Table 1, where all of the correlation

functions are normalized to unity at t = 0. While there are

Fig. 2 Typical CSA tensor principal directions for peptides. The

least-shielded component is denoted as r11, and the most-shielded

component is r33. For each tensor, one of the components points in a

direction very nearly perpendicular to the peptide plane
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some differences between the four models considered here,

a number of general trends are evident, and likely to be

reliable. First, the effects of librational motions of the N–H

bond are significant, even when just zero-point vibrational

motion is considered. This can be seen in the third column

of Table 1, where values of P2½uð0Þ � vðtÞ�h i; which is the

conventional S2 parameter in the Lipari-Szabo model free

analysis, ranges from 0.85 to 0.90. In addition this angular

(or librational) dependence, fluctuations in the magnitude

of the bond length have the effect of further reducing the

effective dipolar coupling between the amide nitrogen and

its attached proton. A more complete analysis of these

zero-point motions, including estimates of anharmonic

motions that are not included here, has been given earlier

(Case 1999).

The dipolar order parameters shown here roughly match

those measured for secondary structure residues in small

proteins. For example, the S2 values fitted to 15N relaxation

data for GB3 (Hall and Fushman 2003) are 0.861 and 0.827

for Phe30 and Phe52, respectively, if the N–H bond length

is taken to be 1.01 Å, which is the actual equilibrium value

from MP2 quantum chemistry calculations (Case 1999).

This indicates that the peptide groups of these and similar

residues are actually quite rigidly held to the overall

molecular frame, since a model that includes only zero-

point librations (and no internal peptide group rotation) fits

the observed data quite well. Since most N–H vectors in

secondary structure regions in GB3 (and in many other

small proteins) have relaxation rates close to those

observed for Phe30 and Phe52 in GB3, it is reasonable to

argue that only local vibrational motion is being seen in
15N relaxation measurements for these peptides. This view

is in agreement with results from recent molecular

dynamics simulations which also show peptide motions

that can be interpreted in the same way (Buck and Karplus

1999; Buck et al. 2006; Hornak et al. 2006).

A second key point from Table 1 is that the zero-point

orientational averaging of the CSA tensor is much less

pronounced than for the N–H dipolar interaction: orienta-

tional S2 values for the r11 direction of the nitrogen CSA

tensor (third column of Table 1) range from 0.95 to 0.97,

which are much closer to unity than are the corresponding

dipolar averages. The shielding tensor is an electronic

structure property, and its directionality appears to be more

strongly influenced by the positions of the heavy atoms

(and in particular, of the partial double bond between C¢

Table 1 15N CSA and N–H dipolar averages. For each cell, the

average is normalized by dividing by the same quantity but with t = 0.

The final column gives the product of columns 3 and 4, that is

xuð0Þ � xvðtÞh i � P2½uð0Þ � vðtÞ�h i: For dipolar interactions, x is r–3,

where r is the N–H distance and u or v are unit vectors along the N–H

bond direction. For the CSA interaction x is D r ” r11 – (r22 + r 33)/2,

and u or v are unit vectors along the r11 direction (see Fig. 2)

interaction model P2½uð0Þ � vðtÞ�h i xuð0Þ � xvðtÞh i xuð0Þ � xvðtÞP2½uð0Þ � vðtÞ�h i 3 · 4

dipolar NMA 0.854 0.940 0.810 0.803

NMA3 0.861 0.959 0.829 0.826

phe30 0.870 0.968 0.842 0.842

phe52 0.897 0.963 0.862 0.864

CSA NMA 0.972 0.956 0.930 0.929

NMA3 0.953 0.975 0.928 0.929

phe30 0.971 0.979 0.951 0.951

phe52 0.975 0.980 0.956 0.956

dipole-CSA NMA 0.965 0.965 0.916 0.931

NMA3 0.940 0.988 0.921 0.929

phe30 0.946 1.000 0.938 0.938

phe52 0.955 0.989 0.935 0.944

Table 2 Effective 15N CSA values. In the fourth column, u is along the N–H bond and v is along the r11 direction of the 15N CSA tensor. The

angle b is defined such that P2ðcos bÞ ¼ P2½uð0Þ � vð0Þ�h i

model Drav Dreff P2½uð0Þ � vð0Þ�h i b

NMA –137.2 –135.3 0.804 21.2�
NMA3 –166.7 –162.6 0.797 21.6�
phe30 –160.3 –158.3 0.754 23.9�
phe52 –155.7 –153.7 0.779 22.6�
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and N) than it is to the position of the amide proton. Since

the zero-point vibrational amplitude of the light hydrogen

atom is greater than that of the heavier carbon and nitrogen

atoms, fluctuations in the direction of the CSA tensor are

found to be much smaller than those of the N–H bond

direction. This behavior is in contrast to the implicit

assumption, found in most analyses of peptide relaxation,

that the S2 value for dipolar and CSA relaxation ought to be

about the same. (The practical consequences of this error

are mitigated by the fact the CSA tensor itself is often

taken as a fitting parameter; we discuss this more below).

As one might expect, the orientational averaging of the

cross-correlated interaction between dipolar and CSA

relaxation is intermediate between that of pure dipolar and

pure CSA relaxation, as shown in the final four rows of

Table 1. The cross-correlated values are always much

closer to the CSA values than to the dipolar values.

All of these interactions involve averaging both of

angles (the third column of Table 1) and magnitudes of the

interactions. For dipolar interactions, it has been known for

a long time that these fluctuations are almost uncorrelated,

so that the final two columns are nearly equal

(Brüschweiler 1992). This statistical independence is also

very accurate for the CSA-related fluctuations, as can be

seen in the Table. So, at least for these relatively small

vibrational motions, one can consider the angle and

magnitude fluctuations separately when analyzing CSA

relaxation.

Effective CSA tensors

The vibrational averaging we are considering here occurs

on a sub-picosecond time scale, and is invariably in the

extreme narrowing regime for NMR relaxation. The exact

time-dependence for relaxation then becomes irrelevant,

and the effect of the motion is to multiply the spectral

density function expected for a rigid body by an order

parameter, S2. This order parameter can be, and often is,

incorporated into an ‘‘effective’’ value of the bond length

or shielding anisotropy. For dipolar interactions, we can

write:

1

r6

� �

eff

� P2½uð0Þ � uðtÞ�
r3ð0Þr3ðtÞ

� �

vib

ð14Þ

Here u is a unit vector along the bond direction, and t is

a time long compared to a vibrational time scale. Hence, a

rigid molecule with a bond length of reff � 1=r6
� ��1=6

eff

would have the same relaxation behavior as the actual

system that includes the vibrational averaging. In a similar

fashion, we can define an effective CSA tensor for pure

CSA relaxation:

Dr½ �eff � Drð0ÞDrðtÞP2½uð0Þ � uðtÞ�h ivib

� �1=2 ð15Þ

This state of affairs for dipolar relaxation has been recog-

nized for many years (Henry and Szabo 1985; Case 1999),

and it is quite common for analyses of experimental

relaxation behavior to approximately incorporate fast

vibrational effects (including zero-point motion) into an

effective bond length that is slightly longer than the actual

equilibrium bond length. Estimates of these effective bond

lengths can be derived from experiment (Ottiger and Bax

1998), or from quantum chemistry calculations much like

those considered here (Case 1999). The two estimates are

in quite good agreement, although both anharmonic effects

and solvation corrections are required in a careful analysis.

(For historical reasons, many analyses of 15N relaxation in

the literature use an effective bond length for the amide

N–H bond of 1.02 Å. This is intermediate between the

equilibrium bond length, which is about 1.01 Å, and a

value of 1.04 Å that reflects local vibrational motion

(Ottiger and Bax 1998; Case 1999)).

Our analysis now allows us to estimate the effective

CSA tensors as defined in Eq. 15; these are listed in

Table 2. The key general point here is that the effective

tensor differs from the average tensor (i.e. the average of

the values computed for each snapshot) by only 1.2–2.5%.

This is a consequence of the high order parameters seen in

Table 1. (Remember that Dr½ �eff is squared in expressions

for pure CSA relaxation.) The actual values differ a lot in

the four models we consider: NMA in vacuum has no

hydrogen bond partners, and it is known that the effect of

hydrogen bonding is to significantly increase Dr. Hence we

do not expect (or find) the NMA monomer results to be

near to the tensors seen in proteins, which almost invari-

ably have hydrogen bonding partners. The remaining three

models have hydrogen bonding interactions, and conse-

quently, more negative values of Dr. The results from the

PIMD simulation have the potential advantage of being

extracted from a simulation of a real protein in water, but

they have the disadvantage that the local geometries are

determined by the molecular mechanics force field, which

is known to have inaccuracies in both equilibrium geom-

etries and in the extent of fluctuations about equilibrium

(Mannfors et al. 2003). The local geometries and fluctua-

tions given by the DFT results on (NMA)3 are probably the

more accurate in this respect, but here the hydrogen bonds

are energetically optimized in a way that might not be

possible in the context of an entire polypeptide chain.

Overall, this means that the differences of ~10 ppm among

the last three rows of Table 2 reflect real uncertainties in

our models. One should also bear in mind that results for

Dr in NMA vary by nearly 10 ppm depending on what

density functional or correlation model is used, even at the
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CBS limit (Moon and Case 2006). All of these factors limit

the conclusions that can be drawn from the absolute CSA

values (or effective values) reported here. Nevertheless, we

expect our estimates of order parameters, which are a rel-

ative measure of motion, to be reliable.

It is worth noting that the individual tensors that go into

the vibrational average have a lot of variability. Figure 3

shows histograms for the CSA in the snapshots used for

NMA3 and for the GB3 simulation. The standard deviation

about the mean is 27 ppm for NMA3 and 23 ppm for res-

idue 30 in GB3. This implies that small changes in the

geometry can have a significant impact on the shielding

tensor, and suggests that it may be very difficult to find a

single structure that is representative of the ensemble. For

example, for NMA and NMA3 we know the equilibrium

structure (about which the normal mode expansion was

made). The 15N CSA for this average structure is –148.1

for NMA and –168.5 ppm for NMA3; the latter is close to

the vibrational average of –166.7 ppm (Table 2) but the

former value is significantly different from the vibrational

average of –137.2 ppm. Hence, simply computing a

shielding tensor for an optimized structure may not always

be sufficient to represent even the local vibrational aver-

aging that is taking place. Further investigation of this

question is ongoing. Finally, one should note that the

variations shown in Fig. 3 have only a minor effect on

relaxation: values of xuð0Þ � xvðtÞh i (fourth column of

Table 1) vary between 0.96 and 0.98.

13C relaxation

As mentioned above, CSA relaxation for the carbonyl

carbon is more complex than for the amide nitrogen since

the CSA tensor is very rhombic. We can express this as a

sum of two axial tensors (Eq. 7), and look at the effects of

averaging on each tensor, as well as on their cross-corre-

lations. These are given in Table 3. Again, there are some

differences for the various models, but the S2 values (given

in the last two columns of the table) range from 0.92 to

0.98. Fluctuations in the magnitude of r1 = r11 – r33 are

much smaller than those for r2 = r22 – r33, as seen in

column 4 of Table 3. This is in accord with a model that

r22 varies more strongly with conformation than does ei-

ther r11 or r33 (Markwick and Sattler 2004; Loth et al.

2005). It should be noted, however, that the dependence of

the carbonyl shielding tensor on environment in proteins is

still under active study (see, e.g. (Burton and Tjandra

2007)), and variations over vibrational motion need not

necessarily reflect variations of the average from one

residue to another.

As with the amide nitrogen tensor, we can express the

effects of local vibrational averaging in terms of an

effective CSA tensor, and these values are collected in

Table 4. As one would expect from the high values of S2

shown in Table 3, the difference between average and

effective tensors is quite small; remember that tensor is

scaled according to the square root of S2, that is, by 1–3%

for values of S2 between 0.98 and 0.94, as found here.

Hydrogen bonding is an important contributor to the

carbonyl CSA tensor, especially for Dr2. In the snapshot

we chose, Phe30 (in the central helix) has well-formed

hydrogen bonds, but the carbonyl of the Phe52 peptide

(actually in residue 51) has only a weak hydrogen bond

(average H...O length of 2.1 Å), even though it is in a

region of regular secondary structure. Hence, the Phe30

results are close to that for the fully-hydrogen-bonded

NMA3 model, whereas those for Phe52 are close to those

for NMA itself, which has no hydrogen bonds.

Recently, Jordan et al. (2007) have carried out an

analysis of motional effects on carbonyl carbon CSA val-

ues, using (classical) molecular dynamics simulations on

calmodulin. They analyze internal fluctuations of 50 pep-

tide planes (not including overall or local dynamical events

involving the peptide plane as a whole,) and find a average

value of S2 of 0.93. This is comparable to the values found

in Table 3, and the general conclusion is the same as ours:
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Fig. 3 Histogram of Dr values

for Phe30 in GB3 (left) and for

(NMA)3 (right)
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local distortions of the peptide group should have only a

small (1–3%) effect on the effective CSA tensor for car-

bonyl relaxation, even though the shielding tensor is

actually quite sensitive to such distortions. This sensitivity,

however, means that considerable care must be taken in

comparing quantum chemistry calculations to experiment:

it may be necessary to explicitly carry out motional aver-

aging in the quantum calculations in order to obtain reli-

able results.

The final four columns of Table 4 give information

about the orientation of the carbonyl shielding tensor rel-

ative to the peptide bond direction. This information is

especially relevant for the analysis of cross-correlated

relaxation between the CSA tensor and the C¢–N dipolar

interaction. The angle b11 is the effective angle between

the r11 direction and the C¢–N bond direction. It is an

‘‘effective’’ value in the sense that a completely rigid

peptide with this angle would exhibit the same cross-cor-

related relaxation as the actual (vibrating) peptide group of

our models. This angle is in the range of 35–39�, which is

in excellent agreement with results from solid-state NMR

and from liquid-state relaxation studies (Sitkoff and Case

1998; Fischer et al. 1998; Loth et al. 2005; Jordan et al.

2007).

Discussion

Although CSA relaxation effects become increasingly

important at high magnetic fields, relatively little is known

about how shielding tensors vary with molecular confor-

mation, nor about how these variations affect NMR

relaxation. Here we use modern methods of computational

chemistry to address one piece of the puzzle: what are the

likely effects of local vibrational motion on the 15N and
13C¢ tensors in peptide groups? Even this becomes a

somewhat complex problem, since we need accurate

calculations of electronic structures and reasonable models

for nuclear motion that include zero-point vibrational ef-

fects. Uncertainties in how to best estimate these quantities

leads to some variation in results, as seen in Tables 1–4.

Nevertheless, some key conclusions can be drawn: fluctu-

ations in the magnitude and directions of the 15N CSA

tensor are quite small, with squared order parameters in the

Table 3 13C CSA and Ca–C dipolar averages. For each cell, the

average is normalized by dividing by the same quantity but with

t = 0. For CSA-11, both u and v point along the r11 direction and xu

= xv = r1; for CSA-22, they both point along r22 and xu = xv = r2;

for CSA-12, u points along r11 and v points along r22, with xu = r1

and xv = r2. The final column gives the product of columns 3 and 4,

that is xuð0Þ � xvðtÞh i � P2½uð0Þ � vðtÞ�h i

interaction model P2½uð0Þ � vðtÞ�h i xuð0Þ � xvðtÞh i xuð0Þ � xvðtÞP2½uð0Þ � vðtÞ�h i 3 · 4

CSA-11 NMA 0.987 0.995 0.981 0.982

NMA3 0.943 0.995 0.938 0.938

phe30 0.972 0.996 0.969 0.968

phe52 0.990 0.992 0.982 0.982

CSA-22 NMA 0.986 0.956 0.943 0.943

NMA3 0.941 0.980 0.923 0.922

phe30 0.969 0.986 0.956 0.955

phe52 0.986 0.948 0.935 0.935

CSA-12 NMA 0.981 0.988 0.968 0.969

NMA3 0.954 0.994 0.948 0.948

phe30 0.946 0.994 0.942 0.940

phe52 0.984 0.981 0.965 0.965

Table 4 Effective 13C CSA values. In the fourth column, u is along the N–C’ bond, v11 is along the r11 direction and v22 is along the r22 of the
13C CSA tensor. The angle b is defined such that P2ðcos bÞ ¼ P2½uð0Þ � vð0Þ�h i

model Dr1,av Dr1,eff Dr2,av Dr2,eff P2½uð0Þ � v11ð0Þ�h i P2½uð0Þ � v22ð0Þ�h i b11 b22

NMA –173.7 –172.6 –70.2 –69.7 0.520 –0.023 34.5� 55.7�
NMA3 –173.1 –168.1 –97.9 –95.0 0.451 0.046 37.2� 52.9�
Phe30 –175.8 –173.4 –95.7 –94.2 0.413 0.085 38.7� 51.4�
Phe52 –164.3 –163.5 –68.4 –68.0 0.422 0.075 38.4� 51.7�
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range 0.93–0.96; correspondingly, the effective shielding

tensor (which would be used if vibrational averaging is

ignored) is 2–4% smaller than the average tensor. The

corrections for vibrational motion for CSA relaxation are

much smaller than those needed for vibrational contribu-

tions to N–H dipolar relaxation. Squared order parameters

for the carbonyl carbon CSA tensor are very similar (in the

range of 0.92–0.95), with the r22 component (which points

roughly along the C=O bond direction) showing larger

fluctuations than r11 or r33.

Since the time scale for local vibrational motion is in the

extreme narrowing limit for NMR relaxation, one can

generally fold the effects of this motion into an effective

tensor: the effective tensor shows the same relaxation

behavior in a rigid system as the real tensor does for the

vibrating system. Estimated values for these are given in

Tables 2 and 4. These numbers can be compared to values

extracted from various sorts of NMR experiments, but

quantitative comparisons will require careful attention to

the details of how the ‘‘experimental’’ tensors are deter-

mined. As an example, Kroenke et al. (1999) estimated the

mean value of the 15N CSA in ribonuclease H to be –172 ±

13 ppm, with a standard deviation in the site-to-site vari-

ation of 6 ppm. This analysis assumes an axially symmetric

tensor, so is most directly comparable to Dreff (1 + g2/3)1/2

in the nomenclature of the present paper. Furthermore, the

data extraction assumes that the spectral density J(x) is the

same for dipolar and CSA relaxation. If we take into ac-

count the fact the the dipole-dipole squared order param-

eter (SDD
2 ) is different from the CSA-CSA value (SCSA

2 ), we

arrive at the following relation (see the Appendix):

Dreff 1þ g2

3

� �1=2

¼ DrKRPSDD ð16Þ

Here DrKRP is the –172 ppm value extracted by Kroenke

et al. (1999) from their experimental data. Setting SDD;

0.94 and g; 0:42; a value of –172 ppm for DrKRP corre-

sponds to a value of Dreff of 157 ppm. This is close to the

values given in Table 2 for hydrogen-bonded models (the

final three columns). Hence the effect of ignoring the

rhombicity of the 15N tensor (about a 3% reduction), and of

assuming the same spectral density for dipolar and CSA

relaxation (about a 6% reduction), combine to lower the

fitted result by 15 ppm. This is roughly equal to the esti-

mated standard deviation in the original paper. Hence, the

elaborations given here are within the original statistical

errors, but should become important as new measurements

are made or as new types of data (such as from solid-state

NMR) become available. We show in the Appendix that a

similar re-interpretation can be made for other analyses of
15N CSA values in proteins (Fushman and Cowburn 1998;

Damberg et al. 2005; Hall and Fushman 2006). Given the

limitations of the models used here, it is not possible to

provide a convincing estimate of the possible errors in our

estimated value for Dreff, but all of the models predict that

local vibrational motion should affect N–H dipolar relax-

ation to a much greater extent that it affects CSA relaxa-

tion. Further calculations, and careful analysis of both

liquid and solid-state data will be required to know for sure

exactly how big the difference is in representative protein

environments.

In the end, the question of the ‘‘best’’ value to use for

effective shielding tensors has no unique answer, and is

similar to the question of assigning an effective bond

length in relaxation calculations. A parameter like DrKRP is

probably the simplest way to summarize the observed field

dependence of relaxation rates. As long as one is consis-

tent, this value can be plugged into calculations that

assume a fixed value for Dr. On the other hand, to make

comparisons to theoretical calculations, or to compare fits

to experiment where different assumptions and parameters

might be used, it is useful to be able to back out estimates

of the CSA tensor itself, or its vibrationally averaged

effective value, Dreff (Eq. 15). Differences between these

various estimates amount to only a few percent, with larger

effects for nitrogen than for the carbonyl carbon, but they

can be important if we are to extract structural or dynamic

information from quantitative analyses of CSA tensors in

proteins.

It is important to note that the motional effects described

here are restricted to fast local vibrations. Peptide groups,

particularly in loops and other mobile parts of a protein,

can also undergo larger and slower internal motions, which

we have not attempted to model here. For these larger

motions, it is likely that the direction of the principal axes

of the CSA tensor will follow the peptide plane, and the

distinction between motion affecting dipolar relaxation and

that affecting CSA relaxation will become less important.

But these larger motions might also lead to fluctuations in

the magnitude of Dr (as well as to its orientation); classical

and path-integral dynamics simulations to investigate these

larger motions are ongoing.
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Appendix

The procedure used by Kroenke et al. (1999) to estimate
15N CSA values in proteins starts from expressions for
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autorelaxation and crossrelaxation rate constants (their Eqs.

1 and 2):

Cauto ¼ R2� 0:5R1� 0:454rNH ¼ ð3d2þ 4c2ÞJð0Þ=6þRex

ð17Þ

Ccross¼ðgxy=gz�0:5ÞðR1�1:249rNHÞ¼ð3d2þ4c2ÞJð0Þ=6

ð18Þ

Here d = h cN cH < rNH
–3 > and c = xN Dr /31/2. The

symbols have their standard meanings, as defined in the

original paper. Assuming that Rex is near zero, and that d is

known, values of J(0) and c can be determined from the

field dependence of either Gauto or Gcross, since c is field

dependent but J(0) is not. If one fits the slope (m) and

intercept (b) of a best-fit line of either Gauto or Gcross vs. x

N
2 , one can derive [Eq. 4 of Kroenke et al. (1999)]:

DrKRPj j ¼ ð3d=2Þðm=bÞ1=2 ð19Þ

For the residues analyzed, there was not a statistical

difference between Gauto and Gcross, so a single slope could

be used. The analysis excluded sites with chemical

exchange broadening, or with high mobility (as monitored

by the nitrogen-proton NOE). This is qualitatively similar

to our selection here of two residues in well-formed sec-

ondary structure.

If we recognize that, in fact, J(0) may be different for

dipolar and CSA relaxation, we can make a model in which

the principal differences occur from vibrational motion.

Then:

JCSAðxÞ; S2
CSAJ0ðxÞ; JDDðxÞ; S2

DDJ0ðxÞ ð20Þ

Here J¢(x) is the spectral density that would be present in

the absence of fast vibrational motion, and this is assumed

to be the same for either type of relaxation. The

justification for this approximation is as follows: for

large-scale rotations of the peptide group, the CSA tensor

will follow the peptide plane orientation, as will the

direction of the N–H bond. Hence, J¢(x) should be about

the same for both types of interactions. For vibrational

distortions, on the other hand, the distinction needs to be

made, as is clear from Table 1. Replacing the single J(0) in

Eqs. 17 and 18 with separate values, as in Eq. 20, is

equivalent to making the replacements

c! cSCSA; d ! dSDD; Jð0Þ ! J0ð0Þ ð21Þ

Then, substituting this into Eqs. 17–19 and setting Dreff

= SCSA Dr leads to Eq. 16 in the main text.

If one were to incorporate the effects of internal

motion into an effective value of d (that is, of < rNH
–3 >),

then SDD
2 would be unity, and the fitting procedure used

by Kroenke et al. (1999) would generate an effective

value for Dr (aside from considerations of rhombicity).

In practice, however, this analysis, along with many

others, assumes a value of 1.02 Å for < r–3 > –1/3, which

captures some but not all of the vibrational reduction of

the dipolar interaction strength (Case 1999). The

remaining effects, which are mostly out-of-plane vibra-

tions about the peptide nitrogen, also need to be con-

sidered. Experiments and calculations on small proteins

or model peptides (Ottiger and Bax 1998; Case 1999)

suggest that librational contributions would lead to an

effective value of 1.041 Å for < r–3 > –1/3; this corre-

sponds to an additional contribution to SDD of about a

factor of ð1:02=1:041Þ3; 0:94: This estimate has been

used in the main text to provide an updated estimate for

Dreff.

One could, of course, treat DrKRP of –172 ppm as yet

another ‘‘effective’’ tensor, suitable for calculations where

one assumes that the spectral densities are the same for the

dipolar and CSA interactions, and that < rNH
–3 > –1/3 is

1.02 Å. Or, if all local motion relevant to dipolar relaxation

were subsumed into an effective bond length of 1.04–

1.05 Å then the differences between SCSA and SDD (arising

from slower motions) might be much smaller. But these are

pretty strained definitions, and are not of much help in

making comparisons to other experiments or to theoretical

calculations. It is, after all, Dr itself which is the funda-

mental molecular parameter.

There are other methods of extracting nitrogen CSA

tensors from liquid-state NMR relaxation data (Fushman

and Cowburn 1998; Damberg et al. 2005; Hall and Fush-

man 2006), but these also assume a single spectral density

and a known value of d that corresponds to < rNH
–3 > of

1.02 Å. Hence, the same model can be used to allow for

differences between dipolar and CSA vibrational order

parameters. Note that this refitting has almost no effect on

estimates of the site-to-site variability in 15N tensors, which

is still under active investigation.
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